If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+42x+28=0
a = 10; b = 42; c = +28;
Δ = b2-4ac
Δ = 422-4·10·28
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{161}}{2*10}=\frac{-42-2\sqrt{161}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{161}}{2*10}=\frac{-42+2\sqrt{161}}{20} $
| 8k-6=9+8k-5-5k | | 15=m9-m4 | | x=(7*19)-8+(6*19)+11 | | Y+4=-3(x+1) | | -144=-4(2n+6)-7n | | 6a+5a-1=21 | | 7x+2=2(x+6 | | 15=m*9-m*4 | | 3x-5(x-4)=-3+5x+2 | | M=m*9-m*4 | | 7x-5=-3+8x | | |2x+11|=39 | | m=m×9+m×4 | | 5(4k-6)=90 | | 5/4y-6=-1 | | 7⎛⎞+⎜⎟⎝⎠t+6−2352t=5t−11 | | 5/4y-6=01 | | 3x+5(2-5x)=-13x+2-9x | | 12y+12=12y | | -r+10=6+2r-5r | | 37+s=80/2s= | | 5(x+6)=10x+5 | | 7k-21=-14k+21 | | 6-2/32w=14 | | 20+30=-5(3x-10) | | 420/d=30d= | | 4/5x1/10=9/10 | | 2+6n=5n+5 | | -11=11t+8 | | 32h+125=125-8h | | -7+12x=12x-7 | | x180=45x= |